Documenting radiation, chemical exposure, & training for workers at the Portsmouth Gaseous Diffusion Plant (GDP)

A report created in collaboration with USW local 1-689 (Piketon, OH) and the Tony Mazzocchi Center (Pittsburgh, PA)

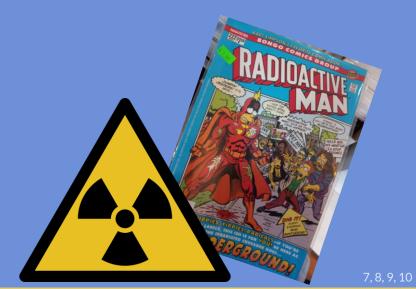
Anna Gambetta, MPH Occ. Env. Epid. University of Michigan, 2024 agambett@umich.edu

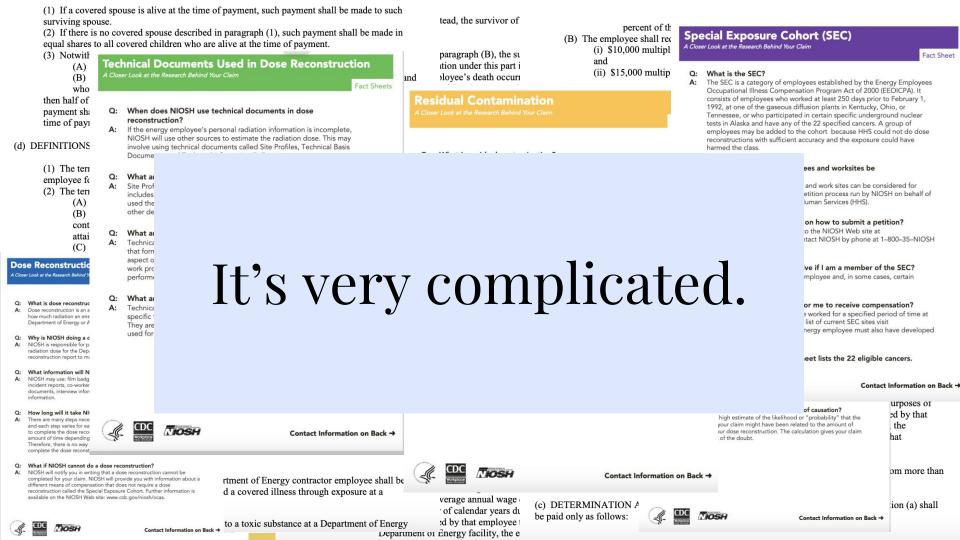
Zachary Jones, BA History University of Maryland, 2023 zackjones098@gmail.com

Background - Site History

• Portsmouth Gaseous Diffusion Plant (PORTS) is a former nuclear site, where enriched uranium was produced for nuclear weapons, submarines, and reactors

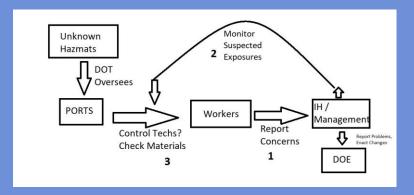
Background


Attitudes towards safety and awareness of workplace hazards have evolved over

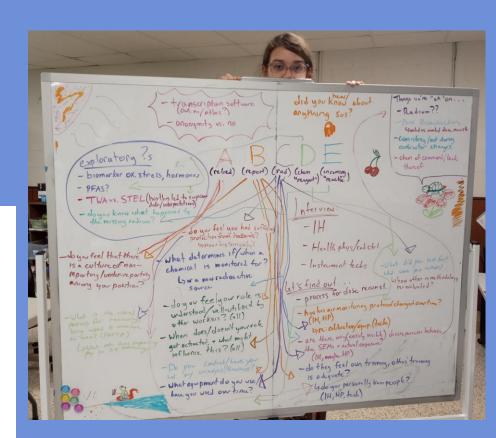


Changes in the 1990s (and early 2000s)

Multiple hazards were identified and begun to be monitored in the 1990s:


- Neutron radiation (1997)
- Transuranic chemicals (e.g. Neptunium, Plutonium, Americium) (~1999)
- Arsenic (1993)
- Beryllium (2004)

Should the SEC be expanded?


Objectives

Case-Building Objectives: Justifying an expansion of the SEC will require a demonstration of widespread faultiness in the quality and quantity of existing exposure data. The following points contribute towards the development of that case.

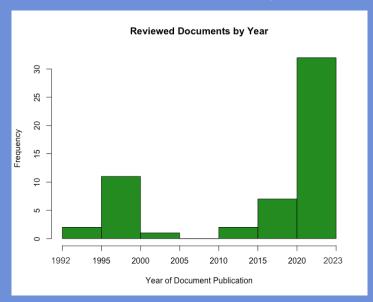
- **A.** Workers' reporting of safety concerns was a critical component of IH's monitoring protocol.

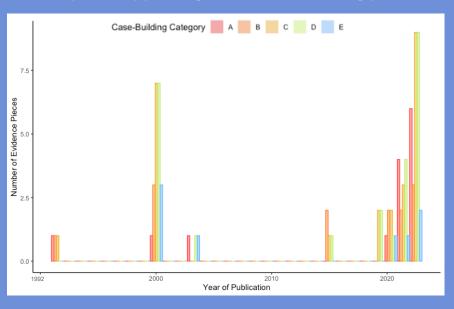
 Area #1 on the flow of exposure/response was problematic.
- **B.** Workers were strongly discouraged from reporting safety concerns. Area #1 on the flow of exposure/response was problematic.
- **C.** In-house radiation monitoring was inaccurate, which may have resulted in underestimation of actual exposure. Area #2 on the flow of exposure/response was problematic.
- **D.** In-house chemical monitoring was inaccurate, which may have resulted in underestimation of actual exposure. Area #2 on the flow of exposure/response was problematic. exposure/response was problematic.
- E. Incoming potential hazards were not accurately characterized. Area#3 on the flow of exposure/response was problematic. Area #3 on the flow of exposure/response was problematic.
- F. All of the above issues have been prevalent through at least 1992.

Methods

Interviews with Specialized Personnel

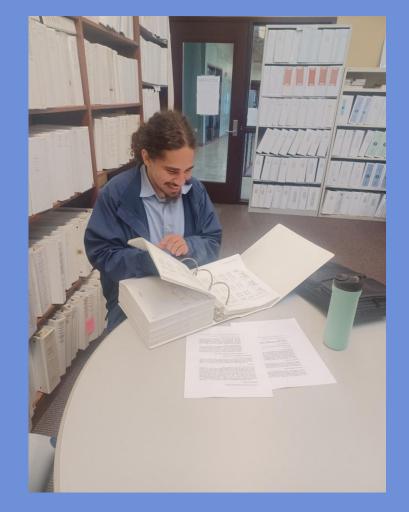
Grounded systems approach, 11 interviewees whisper.ai transcription software


Document Discovery


Union archives, safety rep. documents, EIC archives

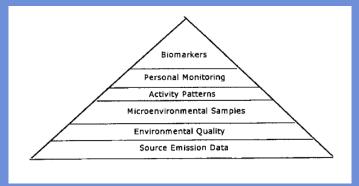
Major Findings

• Found 55 individual documents published in 1992 and beyond supporting all five casebuilding points



- Most interviewees noted deficiencies in training for new hires compared to their initial training
- Confirmed the existence of vast quantities of a previously unmonitored chemical on-site and affirmed its likely use throughout plant history in different locations and contexts

Key Finding: PFAS



Investigating Emerging Hazards

We developed an investigative methodology for future application to novel hazards identified on plant site and applied it to a group of chemicals called PFAS.

This method will allow the union to conceptually approach new hazards more efficiently, which could justify a future SEC expansion

nriched U-235 from the X-330 Process Building 1-235 is further concentrated within the 2,340 di also houses 60 purge stages to separate the lis nd coolant breakdown products, primarily CF4) fr proximately 31,888 ft²) designated t on the first floor towards the south end igh assay uranium-bearing hazardous **Environmental** ROYAL SOCIETY Science Processes & Impacts PAPER An overview of the uses of per- and polyfluoroalkyl Check for updates substances (PFAS)† Cite this: Environ. Sci.: Processes Juliane Glüge, ^{© *a} Martin Scheringer, ^{© a} Ian T. Cousins, ^{© b} Jamie C. DeWitt, ^c Gretta Goldenman, ^d Dorte Herzke, ^{© ef} Rainer Lohmann, ^{© 9} Carla A. Ng, ^{© h}

Xenia Trieri and Zhanyun Wangi

B waste occur. The high enrichment unit is not cur

e process cascade which is designed to further enri

Give-Back Products

- Training detailing our framework for identifying novel hazards
- Document containing data about potential PFAS sources by building
- Interview data and transcripts
- Directory containing key documents that may help with casebuilding for SEC

<u>Building</u> name	<u>Function</u>	DDStatus Code (2023)	Potential PFAS sources Highly likely/confirmed PFAS	Additional Notes
X-100	Administration	AboveGDemo	Hydraulics for elevator, waste streams containing solvents, oils, greases.	Oil stains observed "near elevator hydraulic system."
X-100B	Air conditioning	Active	Waste stream headed to X-720 contains "waste lube oil." Penetrating oil.	Unoccupied
	equipment building			
X-101	Health Services	RDAND	Cleaning solvents and disinfectants, ventilation gaskets, X-ray processing	Cleaning agents not described, X-ray processing chemicals may include
	building		chemicals, gaskets	PFAS

Recommendations

- Continue to identify evidence to define a timeframe for SEC expansion
 - Suggested areas of focus:
 - Recent deficiencies in training protocol
 - Recent barriers to thoroughness in hazard assessment
 - Identify additional archival documents supporting casebuilding
- Further research/evaluations of PFAS exposure at PORTS
 - Assessment of lubricating oil, coolant, Tyvek suits, and firefighting foam for PFAS
 - Assessment of soil samples throughout the plant site
 - Laboratory confirmation of excess PFAS on-site is strongly urged

About Us

Contact Us

Donate

Q

Frequently Asked Questions

General Ouestions Application **Project Details Time Commitment** What are the dates for the summer program?

The dates for the nine-week internship is June 20 - August 18, 2023.

U.S. Nuclear Regulatory Commission

NRC Collection of Abbreviations

NRC Abbreviations.pdf ☆ 3 of 133 ∨ ■ Q

Challenges

HIGHEST PRIORITY. IMPORTANT. INFORMATIVE. INTERESTING. FINE TO ASK.

1- All: Logistical

What year did you begin work at the plant?

Can you list what positions you have held over time?

When you worked in industrial hygiene/health physics/ as a radiation technician, which locations did you work in?

2-IH Rad/HP: Characterizing daily protocol

What were the day-to-day responsibilities of your job in/as IH/HP/Instrument/RCT?

What specific hazard or hazards did you look for, and how did you test for it or them?

Did hazard-testing protocol or policy change throughout the time of your employment?

What determined if a hazard needed to be tested for? What determined if a hazard didn't need to be tested for? Did this change over time?

How often did your team assess for fugitive emissions? a fugitive emission is when something you think you've controlled and removed from the environment is leaking back into the environment to potentially expose people.

3- IH Rad/HP: Characterizing response protocol

For people involved in direct response: Can you walk us through the process of being called out

PFAS and WHPP > Inbox x

 $\textbf{Steven Markowitz} \ \texttt{Steven.Markowitz} \\ @ qc.cuny.edu \\ \underline{\textbf{via}} \ \texttt{cuny} 907.onmicrosoft.com$

Thu, Jul 13, 1:48 PM

to me, Jonathan, Khaula, Sadiah 🕶

Hi, Anna - Thanks for your email about PFAS. WE do not now test for PFAS in blood or urine.

We are looking into it as a pilot at 1 or more of our DOE sites. Developing a strategy and protocol will take some time. Please feel free to check back with us in a couple of months.

We look forward to hearing more about your OHIP work this summer.

Thx

Steven Markowitz MD

Successes

Personal Reflections

With Zach and Anna

Special thanks to:

Everyone at USW Local 1-689

Our mentors from the Tony Mazzocchi Center

& other sources of support

References

- 1. Portsmouth/Paducah Project Office. (n.d.). *Portsmouth site*. United States Department of Energy. https://www.energy.gov/pppo/portsmouth-site
- 2. Fluor-BWXT Portsmouth. (n.d.). *Portsmouth gaseous diffusion plant virtual museum*. United States Department of Energy. https://portsvirtualmuseum.org/
- 3. Division of Energy Employees Occupational Illness Compensation. (2023, May 12). *EEOICP site exposure matrices website:*DOE facilities and RECA sites data. United States Department of Labor. https://www.sem.dol.gov/
- 4. Goodyear Atomic Corporation. (1964, Apr. 17). Your eyes and your living. *Wingfoot Clan, 11*(15), 3. https://portsvirtualmuseum.org/news-archive/newsletters/1964/19640417wingfootclan.pdf
- 5. Goodyear Atomic Corporation. (1976, Jan.). Athletes know protection value. *Wingfoot Clan, 23*(1), 3. https://portsvirtualmuseum.org/news-archive/newsletters/1976/197601wingfootclan.pdf
- 6. Martin Marietta. (1990, Aug.). Safety awareness best approach to ensure compliance. *Energy Systems at Portsmouth, 5*(7), 8. https://portsvirtualmuseum.org/news-archive/newsletters/Energy%20Systems%20at%20Portsmouth/1990/199008energysystems.pdf
- 7. Cardarelli, J. (1997). Health Hazard Evaluation Report HETA 96-0198-2651, Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. (NTIS/03011866_a). National Institute for Occupational Safety and Health. https://www.cdc.gov/niosh/hhe/reports/pdfs/1996-0198-2651.pdf

References

- 8. Office of Oversight: Environment, Safety and Health. (2000, May). *Independent investigation of the Portsmouth Gaseous Diffusion Plant*. United States Department of Energy.
- 9. Ahrenholz, S. H. (1996). *Health Hazard Evaluation Report HETA 94-0077-2568, Lockheed Martin Utility Services, Inc., Piketon, Ohio.* (NTIS unavailable). National Institute for Occupational Safety and Health.

 https://www.cdc.gov/niosh/hhe/reports/pdfs/1994-0077-2568.pdf
- 10. Worker Health Protection Program. (2004). All workers at Paducah and Portsmouth to receive beryllium testing. WHPP HealthWatch, 2(7), 1. http://www.worker-health.org/QueensCollegeNewsletter7.pdf
- 11. National Institute for Occupational Safety and Health. (n.d.). *FAQs: Special Exposure Cohort (SEC)*. Centers for Disease Control and Prevention. https://www.cdc.gov/niosh/ocas/faqssec.html
- 12. Energy Employees Occupational Illness Compensation Program, 42 USC § 7384. (2000). https://www.dol.gov/sites/dolgov/files/owcp/energy/regs/compliance/law/EEOICPAALL.pdf
- 13. Energy Employees Occupational Illness Compensation Program, 42 USC § 7385. (2014). https://www.dol.gov/sites/dolgov/files/owcp/energy/regs/compliance/law/EEOICPAALL.pdf

References

- 14. Stabnick, A. and Humphrey, H. (2022). Investigation of awareness and knowledge of workplace hazards at the Portsmouth Gaseous Diffusion Plant: A report completed with the support of OHIP, United Steelworkers Local 1-689, and the Tony Mazzocchi Center.
- 15. Potter, H. (2023). Personal communication.
- 16. National Institute of Environmental Health Sciences. (2023, Aug. 11). *Perfluoroalkyl and polyfluoroalkyl substances (PFAS)*. United States Department of Health and Human Services. https://www.niehs.nih.gov/health/topics/agents/pfc/
- 17. Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22(12), 2345–2373. https://doi.org/10.1039/D0EM00291G
- 18. 3M. (2023). PFAS and their uses. https://pfas.3m.com/pfas_uses
- 19. Lioy, P. J. (1999). The 1998 ISEA Wesolowski Award Lecture Exposure analysis: Reflections on its growth and aspirations for its future. *Journal of Exposure Science & Environmental Epidemiology*, 9(4), 273–281. https://doi.org/10.1038/sj.jea.7500060
- 20. SAIC. (1993). Report for environmental audit supporting transition of the diffusion plants to USEC, Appendix A: Volume II: Portsmouth facilities reports. DOE/OR/1087&V3. United States Department of Energy.

 https://eic.ports.pppo.gov/Document_Viewer.aspx
- 21. Fluor-BWXT Portsmouth. (n.d.). *GIS Viewer*. United States Department of Energy. https://pegasis.ports.pppo.gov/GISViewer/index.html